Effect of environmental factors on hydrolytic degradation of water-soluble polyphosphazene polyelectrolyte in aqueous solutions.

نویسندگان

  • Daniel P Decollibus
  • Alexander Marin
  • Alexander K Andrianov
چکیده

Degradation of a water-soluble polyphosphazene, poly[di(carboxylatophenoxy)phosphazene], disodium salt (PCPP) has been studied in aqueous solutions at elevated temperature. This synthetic polyelectrolyte is of interest as vaccine adjuvant and its degradability constitutes an important component of its safety and formulation stability profiles. The degradation process is manifested by a gradual reduction in the molecular weight of the polymer and cleavage of side groups, which is consistent with previously reported data on hydrolytical breakdown of water-soluble polyphosphazenes. The kinetics of hydrolytical degradation exhibits distinct pH dependence and the process is faster in solutions with lower pH. Remarkably, a number of hydrogen bond forming additives, such as polyethylene glycol and Tween displayed a dramatic accelerating effect on the degradation of PCPP, whereas inorganic salts, such as sodium chloride and potassium chloride, showed a trend for its retardation. The results can be potentially explained on the basis of acid promoted hydrolysis mechanism and macromolecular interactions in the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water-Soluble, Biocompatible Polyphosphazenes with Controllable and pH-Promoted Degradation Behavior

The synthesis of a series of novel, water-soluble poly(organophosphazenes) prepared via living cationic polymerization is presented. The degradation profiles of the polyphosphazenes prepared are analyzed by GPC, 31P NMR spectroscopy, and UV-Vis spectroscopy in aqueous media and show tunable degradation rates ranging from days to months, adjusted by subtle changes to the chemical structure of th...

متن کامل

Equilibrium Swelling Study of Cationic Acrylamide-Based Hydrogels: Effect of Synthesis Parameters, and Phase Transition in Polyelectrolyte Solutions

Cationic copolymer gels of acrylamide and [(methacrylamido) Propyl] trimethyl ammonium chloride (MAPTAC) were synthesized by free radical aqueous solution polymerization. The Taguchi method, a robust experimental design, was employed for the optimization of the synthesis based on the equilibrium swelling capacity of the hydrogels. Based on Taguchi method a standard L16 orthogonal array with fiv...

متن کامل

Effect of cyclodextrins on the degradation rate of benzylpenicillin.

The effect of cyclodextrin (CD) inclusion complexes on the degradation of benzylpenicillin in aqueous solutions was investigated at several different pH values and 37°C. The effects of neutral as well as both positively and negatively charged CDs were evaluated; all together 13 different CDs. Kinetic studies with HPβCD and RMβCD at pH ranging from 1.2 to 9.6 showed that CDs have stabilizing eff...

متن کامل

Improving the efficiency of advanced photocatalytic oxidation process in the presence of sulfite for decomposition of metronidazole from aqueous solutions

 Metronidazole antibiotic is belong to the nitroimidazole family. Non degradability, high solubility in water, toxicity, carcinogenicity and mutagenicity are important concerns related to antibiotics. Therefore, the aim of this study is to apply the new advanced oxidation process of UV/zinc oxide/sulfite (UZS) to degrade metronidazole from aqueous solutions. Methods: In this study, the effect o...

متن کامل

Biodegradable Polyphosphazene Based Peptide-Polymer Hybrids

A novel series of peptide based hybrid polymers designed to undergo enzymatic degradation is presented, via macrosubstitution of a polyphosphazene backbone with the tetrapeptide Gly-Phe-Leu-Gly. Further co-substitution of the hybrid polymers with hydrophilic polyalkylene oxide Jeffamine M-1000 leads to water soluble and biodegradable hybrid polymers. Detailed degradation studies, via 31P NMR sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 11 8  شماره 

صفحات  -

تاریخ انتشار 2010